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Abstract. A quantum gravity-gradiometer consists of two spatially separated ensembles of atoms inter-
rogated by pulses of a common laser beam. The laser pulses cause the probability amplitudes of atomic
ground-state hyperfine levels to interfere, producing two, motion-sensitive, phase shifts, which allow the
measurement of the average acceleration of each ensemble, and, via simple differencing, of the acceleration
gradient. Here we propose entangling the quantum states of atoms from the two ensembles prior to the
pulse sequence, and show that entanglement encodes their relative acceleration in a single interference
phase which can be measured directly, with no need for differencing.

PACS. 39.20.+q Atom interferometry techniques – 03.75.Dg Atom and neutron interferometry –
03.67.-a Quantum information – 03.67.Lx Quantum computation

1 Introduction

Inertial sensors based on matter-wave interferometry are
a rapidly developing technology [1–4]. One class of such
sensors are gradiometers designed to measure linear ac-
celeration gradients, typically gradients caused by inho-
mogeneities in the gravitational potential. The state-of-
the-art design [4] for an atom-wave gravity gradiometer
consists of a pair of atom-wave accelerometers sepa-
rated spatially by a fixed distance and direction. Each
of the two accelerometers contains an ensemble of
laser-cooled atoms, through which a common pair of
(counter-propagating) Raman laser beams are pulsed in
a carefully controlled sequence to drive Rabi oscillations
between atomic ground-state hyperfine levels. The se-
quence and timing of the laser pulses are adjusted so that
the hyperfine ground and excited states of any single atom
interfere during the atom’s motion through the laser field.
At the end of the sequence, the probability of finding an
atom in its excited hyperfine state is a simple function
of a relative phase, which accumulates between successive
pulses in proportion to the atom’s acceleration (relative
to the inertial frame defined by the laser beam) averaged
over its flight time. Subsequently, the resulting pair of ob-
servations of this phase (one for each ensemble) can be
subtracted to obtain a measurement of the relative accel-
eration, and, upon dividing the result by the separation
length, a measurement of the acceleration gradient. We
will give a more quantitative review of this quantum inter-
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ferometry technique in Section 2. A detailed description of
the experimental setup can be found in [4] (see esp. Fig. 1
there).

Even though subtracting the two acceleration mea-
surements allows a number of correlated noise sources
to cancel out as common modes [4], it is still desirable
to avoid such differencing of two nearly-equal measured
quantities, which are corrupted by (uncorrelated) noise. In
this paper, we will show that by prior-entangling (prior to
the laser pulsing sequence) the quantum states of atoms in
the two ensembles (such that every entangled pair has one
atom in each ensemble) it becomes possible to encode the
relative-acceleration information directly in a single inter-
ference phase, thereby eliminating the need for the differ-
encing of two separate phase measurements. This idea is
inspired by the recent discovery of a similar quantum algo-
rithm which uses entangled states to synchronize atomic
clocks non-locally [5]. The Quantum Clock Synchroniza-
tion (QCS) algorithm relies on preparing the atoms “sta-
bilizing” each atomic clock in a special entangled quantum
state whose time evolution reduces to a pure multiplicative
phase as long as each atom in the pair evolves under the
same unitary transformation. By contrast, the Entangled
Quantum Interferometry (EQI) algorithm to be described
below relies on transforming the pair’s quantum state into
a sensor which senses the difference between unitary evo-
lutions of the entangled atoms. Put another way, the EQI
algorithm is a spatial analogue of the QCS algorithm, in
exactly the same sense as atomic clocks are temporal ana-
logues of quantum (atom-wave) interferometers [6].
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2 Overview of matter-wave gravity
gradiometry

Consider an atom in its internal ground state |0〉, moving
through the inertial frame defined by the Raman beams
of an atom interferometer. [Here “inertial frame” has the
same meaning as in general relativity: in the presence of
a gravitational field, our coordinate system will always be
locally-Minkowski (free-falling, or geodesic-normal coor-
dinates) so that the gravitational potential and its first
derivatives vanish at the origin.] The wave function can
be written as a tensor product of the atom’s internal and
external Hilbert-space states:

Ψ0:p (x, t) = |0〉 ⊗
∫
a(k, ω) ei(k·x−ωt) d3k

≡ |0〉 ⊗ ψ(x, t), (1)

where a(k, ω) defines the wave packet representing the
external (space-time) part ψ(x, t) of the quantum state,
ω is related to k via the usual dispersion relation (plus
an additive constant corresponding to the atom’s internal
energy level), and p denotes the average (in general time-
dependent) momentum:

p ≡ 〈ψ| − i�∇|ψ〉 = (2π)3
∫

�k |a(k, ω)|2 d3k. (2)

The need for this cumbersome subscript notation Ψ0:p

will become clear in a moment. Since the two Raman
beams are detuned in frequency by an amount Ω which
corresponds to the energy difference between the ground
and excited states |0〉 and |1〉, they might stimulate the
ground-state atom to absorb a photon from one beam and
emit a lower frequency photon into the other, resulting in
a transition to the excited state |1〉. This stimulated tran-
sition gives the atom a net momentum kick in the amount
�(k1 − k2) ≡ �K, where k1, k2 (|k1| > |k2|) denote the
wave vectors corresponding to the (counter-propagating)
Raman beams. [As the vectors ki, i = 1, 2, point in oppo-
site directions, the magnitude of K is typically twice that
of the ki. Note that Ω is the total energy absorbed by
the atom, which includes not only the transition energy
(within the appropriate bandwidth), but also the recoil
contribution.] The wave function of the same atom excited
in this way from its ground state can then be decomposed,
similarly to equation (1), in the form

Ψ1:p+�K (x, t) = |1〉 ⊗
∫
a(k, ω) ei[(k+K)·x−(ω+Ω)t] d3k

= |1〉 ⊗ ψ(x, t) ei(K·x−Ωt). (3)

Since the wave packet ψ(x, t) is common to both the
ground and excited state wave functions, we will suppress
it (as an overall “normalization” factor) in what follows.
Note that whenever an atom interrogated in the interfer-
ometer is excited from its ground state |0 : p〉 to the inter-
nal excited state |1〉 by Raman pulses, it always picks up
an associated excess energy-momentum (K, Ω) as speci-
fied in equation (3); in other words, the excited atom’s

total quantum state becomes |1 : p + �K〉. Conversely, a
stimulated transition in the reverse direction results in the
transformation |1 : p〉 −→ |0 : p − �K〉.

In the interferometer, atoms are manipulated by laser
pulses of two basic kinds: A Hadamard pulse Hπ

2
(a π/2

pulse followed by the spin operator σz), whose action is

Hπ
2
|0 : p〉 =

1√
2
(|0 : p〉 + |1 : p + �K〉),

Hπ
2
|1 : p + �K〉 =

1√
2
(|0 : p〉 − |1 : p + �K〉), (4)

and a “double” Hadamard pulse Hπ (a π pulse followed
by the spin operator σz), whose action is

Hπ|0 : p〉 = |1 : p + �K〉,
Hπ|1 : p + �K〉 = |0 : p〉· (5)

Consider a single atom’s flight across the laser field during
the interrogation phase: initially, at times t < t1, say, the
atom is in the ground state |0 : p〉. At time t = t1 the
first Hπ

2
pulse hits, and the atom’s state becomes (up to

an overall phase factor which we will always ignore):

Ψ(t1) =
1√
2

( |0 : p〉 + |1 : p + �K〉 ) · (6)

Since atoms are well-localized spatially, their wave func-
tions Ψ(x, t) are sharply peaked around their average posi-
tion 〈Ψ(t)|x |Ψ(t)〉 at all times t. When an atom is excited
by Raman pulses to a superposition of its internal states,
its distribution becomes bimodal, but still sharply peaked
around the two positions (modes). Therefore, to a very
good approximation, we can follow the evolution of the
atom’s wave function during its flight in the interferome-
ter by examining it in the vicinity of the atom’s (average)
position(s) as a function of time t. (See [7] for a more rig-
orous treatment.) Accordingly, at any time t after t1 and
before the next Raman pulse hits, the state equation (6)
evolves, according to equations (1–3), as

Ψ(t) =
1√
2

[
|0 : p〉 + eiK·(xt−x1)−iΩ(t−t1)|1 : p + �K〉

]
,

∀t: t1 ≤ t < t2, (7)

where xt ≡ x(t), x1 ≡ x(t1) etc. is shorthand notation for
the atom’s position at the different times, and an overall
phase factor as well as the common wave packet ψ(x, t)
are suppressed as advertised. At a time t = t2 > t1, an
Hπ pulse hits, and the atom’s new state becomes

Ψ(t2) =
1√
2

[
|1 : p + �K〉 + eiK·(x2−x1)−iΩ(t2−t1)|0 : p〉

]
·

(8)

At any time t after t2 and before the next pulse, the state
equation (8) evolves as

Ψ(t) =
1√
2

[
eiK·(xt−x2)−iΩ(t−t2)|1 : p + �K〉

+ eiK·(x2−x1)−iΩ(t2−t1)|0 : p〉
]
,

∀t: t2 ≤ t < t3. (9)
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At time t = t3, the second and last Hπ
2

pulse hits, and
transforms Ψ(t) into the state

Ψ(t3) =
1
2

[
eiK·(x3−x2)−iΩ(t3−t2)(|0 : p〉 − |1 : p + �K〉)

+ eiK·(x2−x1)−iΩ(t2−t1)(|0 : p〉 + |1 : p + �K〉)
]
· (10)

So as a result of the pulse sequence Hπ
2
− Hπ − Hπ

2
, an

atom which enters the interferometer in the ground state
|0 : p〉 ends up, at the end of the last Hπ

2
pulse (at t = t3),

in the state equation (10) which can be rewritten as

Ψ(t3) =
1
2

[(
eiΘ21 + eiΘ32

) |0 : p〉
+

(
eiΘ21 − eiΘ32

) |1 : p + �K〉)] , (11)

where for i, j = 1, 2, 3, . . .

Θij ≡ K · (xi − xj) −Ω(ti − tj). (12)

After absorbing a factor of eiΘ21 into the overall phase
multiplying Ψ(t3), equation (11) takes the more familiar
form

Ψ(t3) =
1
2

[(
1 + eiΘ

) |0 : p〉 +
(
1 − eiΘ

) |1 : p + �K〉)] ,
(13)

where Θ ≡ Θ32 −Θ21. The phase Θ can now be observed
by measuring the relative abundance of ground vs. ex-
cited state atoms in the state Ψ(t3). Specifically, the frac-
tion P1 of excited-state atoms in the state equation (13)
is given by

P1 =
1
4

∣∣1 − eiΘ
∣∣2 = sin2

(
Θ

2

)
, (14)

and, similarly, the fraction P0 of ground state atoms is
P0 = |1 + eiΘ|2/4 = cos2(Θ/2). On the other hand, sub-
stituting equations (12) in Θ = Θ32 −Θ21 gives

Θ = K · [x(t3) − 2x(t2) + x(t1)] −Ω(t3 − 2t2 + t1).
(15)

If the Raman pulses making up the sequenceHπ
2
−Hπ−Hπ

2
are aligned in time such that t2 = t1 + T and t3 = t2 + T
for some common interrogation time T , the second term
in parenthesis in equation (15) vanishes, and, using the
standard Taylor expansion of x(t), we can rewrite the first
term in the form

Θ = K · ẍ(t2)T 2 + O
(
T 3

)
. (16)

Here the magnitude of the O(T 3) remainder is down by
a factor of order T/Ta relative to the first (acceleration)
term, where Ta ∼ ‖a‖/‖ȧ‖ denotes the timescale over
which the atom’s acceleration a(t) ≡ ẍ(t) varies. There-
fore, as long as the time scale Ta is much larger (as is
typically the case) than the interrogation time T , mea-
surement of the phase Θ following the pulse sequence
Hπ

2 T Hπ T Hπ
2

yields a direct measurement [8] of the
inertial acceleration component K · a.

3 Interferometry with entangled atoms

For a gradient measurement, ordinarily it is necessary to
apply two separate but simultaneous measurements of ac-
celeration to two different ensembles of atoms separated
spatially by a fixed distance. The differential accelera-
tion obtained from these measurements is usually is much
smaller than each locally found acceleration. Therefore the
noise associated with each measurement can severely limit
the accuracy of the gradient measurement. The necessity
for subtracting two large numbers can be avoided, as will
be shown in this section, by using atoms whose internal
states are pairwise entangled in a distributed fashion. In
this case it is possible to obtain the acceleration gradient
information with just one phase measurement.

Start, at time t = t1, with atoms A and B in the
pairwise entangled initial state

Ψ(t1) =
1√
2

( |0 : pA〉A |1 : pB + �K〉B
− |1 : pA + �K〉A |0 : pB〉B ) · (17)

Methods for producing this state will be discussed in the
following sections. Since the state equation (17) is an en-
ergy eigenstate of the total internal Hamiltonian, its ex-
plicit time evolution consists of a pure multiplicative phase
only. Implicitly, it evolves in time kinematically with the
inertial motion of the atoms; according to equations (1–3),
this evolution takes the form

Ψ(t) =
1√
2

[
eiK·(xBt−xB1) |0 : pA〉A |1 : pB + �K〉B

− eiK·(xAt−xA1) |1 : pA + �K〉A |0 : pB〉B
]
,

∀t: t1 ≤ t < t2, (18)

where xAt ≡ xA(t), xB1 ≡ xB(t1), etc., and an over-
all phase factor as well as the common wave packet
ψA(xA, t)ψB(xB , t) are suppressed as in equation (7)
above. For increased readability, let us introduce the fol-
lowing abbreviation which we will use throughout the rest
of this paper: for E = A, B,

|0〉E ≡ |0 : pE〉E , |1〉E ≡ |1 : pE + �K〉E . (19)

Now suppose that, at a time t = t2 > t1, a common Hπ

pulse is applied to both atoms A and B (simultaneously)
in the state equation (18). Then the new state of the pair
at t = t2 becomes

Ψ(t2) =
1√
2

[
eiK·(xB2−xB1) |1〉A |0〉B

− eiK·(xA2−xA1) |0〉A |1〉B
]
· (20)

At any time t after t2 and before the next pulse, the state
equation (20) evolves as

Ψ(t) =
1√
2

[
eiK·(xAt−xA2+xB2−xB1) |1〉A |0〉B

− eiK·(xBt−xB2+xA2−xA1) |0〉A |1〉B
]
,

∀t: t2 ≤ t < t3. (21)
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At a time t = t3 > t2, a final, common Hπ
2

pulse is applied
to the entangled pair A and B, and transforms the state
equation (21) into

Ψ(t3) =
1

2
√

2

[
ei(ΦA

32+ΦB
21)(|0〉A − |1〉A)(|0〉B + |1〉B)

− ei(ΦB
32+ΦA

21)(|0〉A + |1〉A)(|0〉B − |1〉B)
]
, (22)

where, for i, j = 1, 2, 3, . . . ,

ΦA
ij ≡K · (xAi − xAj), ΦB

ij ≡K · (xBi − xBj). (23)

After absorbing a factor of ei(ΦB
32+ΦA

21) into the overall
phase multiplying Ψ(t3), equation (22) takes the more
manageable form

Ψ(t3) =
1

2
√

2

[
eiΦ(|0〉A − |1〉A)(|0〉B + |1〉B)

−(|0〉A + |1〉A)(|0〉B − |1〉B)] , (24)

with the phase observable Φ given by

Φ ≡ ΦA
32 + ΦB

21 − ΦB
32 − ΦA

21

= K · (∆x3 − 2∆x2 +∆x1), (25)

where ∆x ≡ xA − xB and ∆xi ≡ xAi − xBi for i, j =
1, 2, 3, . . . Collecting terms in equation (24),

Ψ(t3) =
1

2
√

2

[
(eiΦ − 1)|0〉A|0〉B + (eiΦ + 1)|0〉A|1〉B

−(eiΦ + 1)|1〉A|0〉B − (eiΦ − 1)|1〉A|1〉B
] · (26)

The phase Φ can now be observed by measuring the rela-
tive abundance in the state Ψ(t3) of those pairs in which
both atoms are in their excited states. If the measure-
ment is performed with a flux of atoms sufficiently low to
entangle and probe one pair at a time, determining the
instances when both atoms are excited can be easily done
by selective ionization.

Even though Ψ(t3) is not stationary, its time evolution
consists of pure phases multiplying each of the coefficients
in equation (26), so the observation time is not critical.
Specifically, according to equation (26), the fraction P11

of those pairs in which both the A-atom and the B-atom
are in the excited state |1〉 is given by

P11 =
1
8

∣∣eiΦ − 1
∣∣2 =

1
2

sin2

(
Φ

2

)
· (27)

On the other hand, if the Raman pulses making up the
sequence −Hπ −Hπ

2
are aligned in time as before so that

t2 = t1+T and t3 = t2+T for some common interrogation
time T , we can write, using equation (25),

Φ = K ·∆ẍ(t2)T 2 + O
(
T 3

)
, (28)

where the magnitude of the O(T 3) remainder is again
down by a factor of order T/Ta relative to the first (accel-
eration) term, with Ta denoting the timescale over which

Fig. 1. Diagrammatics of our proposed concept for matter-
wave interferometry with an ensemble of pairwise-entangled
atoms.

the atoms’ acceleration varies. As long as the time scale
Ta is much larger than the interrogation time T , measure-
ment of the single phase observable Φ following the pulse
sequence T Hπ T Hπ

2
on the entangled pair equation (17)

yields a direct measurement of the inertial acceleration
gradient K · ∆a = K · (aA − aB) between the atoms A
and B. Signal sensitivity of Φ to the acceleration gradient
∆a can be enhanced using techniques similar to the one
discussed in the note [8].

Our concept of matter-wave interferometric gradiome-
try with entangled atoms is illustrated in Figure 1, where
the dashed and solid lines represent two alternative tra-
jectories of the entangled system. From this diagram we
see the main distinction between our scheme and a variety
of other proposals for atomic and optical interferometers,
including those using entanglement: our scheme relies on
pair-by-pair entanglement followed by pairwise detection,
i.e. on a large ensemble of distinguishable pairs of entan-
gled atoms, rather than on entanglement between large
numbers of atoms (e.g. states of the form |N〉|0〉+ |0〉|N〉)
on which most other proposed schemes for entangled
interferometry are founded. [See, for example [9] for (un-
entangled) atom-wave interferometers [10] for optical in-
terferometers with entangled light, and [11] for producing
entangled ensembles of atoms (although not specifically
for interferometry).]

4 Quantifying the improvement

To what extent does the entangled-interferometry tech-
nique proposed in Section 3 represent an improvement
over the standard, “classical” atom-wave gradiometry as
reviewed in Section 2? To answer this question quanti-
tatively, we will now carry out a simple analysis of the
improvement in the signal-to-noise ratio expected with
entangled-interferometry.

We will take the differential phase-shift as our observed
signal, so in a gradient measurement with both classical
and entangled interferometry, the signal is the dimension-
less quantity

S = K ·∆a T 2, (29)
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where a ≡ ẍ, and other symbols are defined as in equa-
tions (16, 28), with the same approximation that allows
neglecting terms of order O(T 3) being assumed implicitly.
In this discussion, for ease of notation we will label the
two atomic ensembles by i = 1, 2. In a “classical” gradient
measurement, two ensembles containingM atoms each are
used to obtain the two acceleration measurements, which
are later differenced to obtain the signal

S = Θ1 −Θ2, (30)

where the phase observables Θi are related to the observed
abundance (fluorescence) of excited-state atoms in each
ensemble i = 1, 2 via equation (14):

sin2

(
Θi

2

)
=
Mi

M
· (31)

Here Mi denotes the number of excited-state atoms at the
end of the interrogation process in ensemble i, i = 1, 2.

For comparison, imagine a similar experiment using
the entangled algorithm of Section 3, involving M pairs
of entangled atoms interrogated in the pulse sequence of
equations (17–23) with the same interrogation-time con-
stant T . At the end of that sequence, the number of atom
pairs M11 in which both atoms end up in their excited
states is measured, which yields the signal

S = Φ, (32)

where according to equation (27)

1
2

sin2

(
Φ

2

)
=
M11

M
· (33)

For simplicity, we will now make the additional assump-
tion that the only sources of noise in both kinds of sig-
nal measurements (classical and entangled) are (i) phase
noise, and (ii) shot noise due to the statistical fluctua-
tions in the observed numbers of excited atoms: in M1

and M2 for the classical case, and in M11 for the entan-
gled case. Since in the latter case we entangle and probe
the atoms pair-by-pair, it is reasonable to assume that
the number of successfully prepared pairs M is known ex-
actly. The same assumption will be made in the classical
case for consistency of the comparison. We will assume a
binomial distribution for these random variables with M
trials and with probabilities P1, P2, and P11, respectively.
These probabilities include the detection efficiency of the
ion counters as well as the effects of loss of atoms due
to collisions, etc. The expected RMS shot noise in each
number measurement Mi is then given by

∆Mi ≡
√
〈Mi

2〉 − 〈Mi〉2 =
√
Pi(1 − Pi)M, (34)

and the expected RMS noise in M11 is, similarly,

∆M11 ≡
√
〈M11

2〉 − 〈M11〉2 =
√
P11(1 − P11)M. (35)

In the classical measurement (Eqs. (30, 31)), the shot noise
contribution to each Θi measurement can be written as

Ni =
∂Θi

∂Mi
∆Mi i = 1, 2. (36)

Since the two measurements of Θi are completely inde-
pendent, the total variance (noise squared) in the quantity
S = ∆Θ is the sum of the variances in each Θi:

Nc =
(
N1

2 +N2
2
) 1

2 ≈
√

2N1 =
√

2
∂Θ1

∂M1
∆M1 , (37)

where the approximate equality holds because of the as-
sumption that the signal S  1. Substituting equa-
tions (31, 34, 14) in equation (37) gives

Nc =
(

2
M

) 1
2

· (38)

In the entangled measurement, according to equa-
tions (32, 33)

S = Φ = 2 arcsin

√
2M11

M
≈ 2

√
2

√
M11

M
, (39)

and the shot noise contribution is

Ne =
∂Φ

∂M11
∆M11 =

(
2(1 − p11)

M

) 1
2

≈
(

2
M

) 1
2

, (40)

where the second equality follows from equation (35), and
the third by the assumption that the signal S  1. Re-
markably, the shot noise contributions in the classical and
entangled measurements are identical. Since a typical clas-
sical gradient measurement operates in a regime where the
number of atoms M in each ensemble i is large enough to
make shot noise negligible [4], the same operating condi-
tions will make it negligible also in the entangled case,
and therefore phase noise is the dominant source of error
in both kinds of measurement.

To compare phase-noise performance of the two kinds
of measurement, we will model the noise as simply pro-
portional to the magnitude of the fluorescence signal [4]:

〈Θi
2〉 − 〈Θi〉2 = σ2 sin2 〈Θi〉

2
, i = 1, 2 (41)

for the classical case, and

〈Φ2〉 − 〈Φ〉2 = σ2 1
2

sin2 〈Φ〉
2
, i = 1, 2 (42)

in the entangled case, where σ is a constant. By the same
arguments as above (Eqs. (36, 37)), the phase noise in the
differential acceleration signal is, for the classical case

Nc ≈
√

2σ sin
〈Θ1〉

2
, (43)

and for the entangled case

Ne =
1√
2
σ sin

〈Φ〉
2

· (44)



370 The European Physical Journal D

Therefore the ratio of phase noise in the entangled mea-
surement to that in the classical measurement can be writ-
ten in the form (cf. Eqs. (32, 30, 29))

Ne

Nc
=

1
2

sin 〈Φ〉
2

sin 〈Θ1〉
2

≈ 1
2

〈Φ〉
〈Θ1〉 ∼ 1

2
‖∆a‖
‖a‖ · (45)

For a typical measurement performed on earth with a 1 m
separation between the two atomic ensembles, the earth’s
∼ 3 000 E gradient field (1 E = 10−9 s−2) and 1 g gravity
suggests suppression of phase noise via entanglement by
a factor of up to 1.5 × 10−7, or more than six orders of
magnitude. For measurements performed in spacecraft in
low earth orbit, the ambient acceleration ‖a‖ will be due
to non-isolated common-mode vibrations originating from
drag forces acting on the spacecraft. Therefore, for a gra-
diometer in low earth orbit (common-mode accelerations
due to atmospheric drag being typically of order 10−5 g or
higher) the phase-noise suppression Ne/Nc via entangled
interferometry can be expected to be a reduced but still
significant two orders of magnitude or better.

5 Producing the entangled atom pairs

A number of methods for entangling two-level atoms have
been discussed in the literature and some implemented in
experiments. For completeness, we will sketch two such
methods which can be used to produce states of the form
equation (17).

One method, originally proposed in Cabrillo et al. [12],
involves pumping two spatially separated atoms A and B
into their excited states, so that the joint system is initially
in the product state

|1〉A|1〉B.
A single-photon detector, which cannot (even in princi-
ple) distinguish the atom from which a detected photon
arrives, is placed halfway between the atoms. Such a de-
tection scheme can be implemented either by using a de-
tector which is inherently insensitive to the direction of
the photon that triggers it, or by using two detectors situ-
ated at the output ports of a symmetric beam-splitter on
which the light paths from the two atoms are symmetri-
cally impingent, thus erasing the which-path information.
When one of the atoms makes a transition to its ground
state, and the detector registers the emitted photon, the
result of its measurement is to put the combined two-atom
system into the entangled state

1√
2

( |0〉A|1〉B + eiφ|1〉A|0〉B
)
, (46)

where the phase φ is a measure of the relative delay be-
tween the paths reaching the detectors from A versus
from B, and can be adjusted to have any desired value
(e.g. as in Eq. (17)) by adjusting the position of the detec-
tor relative to the atoms. The disadvantage of this method
is that it requires perfect detectors capable of distinguish-
ing a single photon from a photon pair. In practice, photon

detectors normally do not have the photon-number reso-
lution, and always have quantum efficiency significantly
lower than unity. As a result, the state (46) will no longer
be the maximally entangled pure state, but a mixed state
that includes a fraction representing both atoms in the
ground state, with the weight proportional to the proba-
bility of the detectors’ failure to detect the second photon.
This will lead to errors in the phase measurements.

A second method, recently investigated in detail by
Haroche and coworkers [13] is (in very rough outline) the
following: start with a single-mode cavity whose excitation
frequency is tuned to Ω. Send the pair of atoms A and B
into the cavity one after the other, with atom B first.
Initially, both atoms and the cavity are in their ground
states:

|0〉A |0〉B |0〉EM , (47)

where |0〉EM denotes the vacuum state of the cavity. After
atom B is in the cavity, apply a π/2-pulse on it, which
transforms the state equation (47) into

1√
2
|0〉A (|0〉B |1〉EM − |1〉B|0〉EM) . (48)

When both atoms are in the cavity, apply a second, π-
pulse, this time on the atom A, thereby transforming the
state equation (48) into

1√
2

( |1〉A |0〉B − |0〉A |1〉B ) ⊗ |0〉EM , (49)

which, for the atom-pair A and B, is in the desired form
equation (17) up to an overall phase factor. The problem
with this method is that it is local. To apply it in our
protocol, we would have to solve an additional problem of
transporting the entangled atoms to the locations of the
measurement without decoherence. However, considering
that a number of proof-of-principle experiments confirm-
ing it have already been performed successfully [13], this
method (or, more precisely, a suitable variant which main-
tains the necessary correlation between atomic energy lev-
els and linear momentum as discussed Sect. 2 above) is
likely to be the method of choice in practical implemen-
tations of the entangled-atom gradiometry algorithm.

6 Future work

The Entangled Quantum Interferometry algorithm as pre-
sented here can be generalized to design sensors of other
“distributed” quantities (such as higher derivatives of the
gravitational curvature tensor); these generalizations will
be discussed in a future publication.
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